CHARACTERIZATION OF GALACTINOL SYNTHASE (GOLS) GENES IN IPOMOEA TRILOBA AND I. TRIFIDA: AN APPROACH USING BIOINFORMATICS

Autores

  • Wuesly Rufino UNOESTE
  • Luís Gustavo Gomes Lobo UNOESTE
  • Edinara Maria Barbosa UNIVERSIDADE PARANAENSE
  • Tiago Benedito Dos Santos UNOESTE
  • Silvia Graciele Hulse de Souza Unipar

Palavras-chave:

Bioinformática, melhoramento genético, batata-doce, família da rafinose (RFO)

Resumo

Galactinol synthase (GolS - EC 2.4.1.123) is classified as a key enzyme that catalyzes the first step in the synthesis pathway of the raffinose family (RFOs). Although GolS genes have been characterized in several important species, their characterization in sweet potatoes has yet to be explored. Ipomoea trifida (Kunth) G. Don (2n = 2x = 30) is currently described as one of the closest ancestors of the sweet potato and considered an excellent crossbreeding species, allowing the introgression of important genes such as GolS. This study aimed to identify and characterize in silico the GolS genes in I. trifida and compare with I. triloba. We identified nine GolS genes, five in I. triloba and four in I. trifida. Our study encompassed various aspects, including gene structure analysis, motif identification, chromosomal distribution, synteny analysis, and gene expression. The presence of gene duplications and purifying selection were highlighted, suggesting the evolutionary significance of GolS genes in these species. Phylogenetic analysis categorized GolS proteins into three groups, potentially reflecting distinct functional roles. Furthermore, synteny analysis revealed orthologous relationships between GolS genes in the studied species and related plants, contributing to our understanding of their evolutionary history. In silico expression analysis across diverse tissues unveiled tissue-specific expression patterns, hinting at specialized roles for GolS genes in different plant organs. These findings contribute to the broader field of plant genetics, carbohydrate metabolism, and agriculture, offering opportunities for crop improvement and sustainable food production.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Wuesly Rufino, UNOESTE

    Graduando em Ciências Biológicas UNOESTE

  • Luís Gustavo Gomes Lobo, UNOESTE

    Graduado no curso de ciências biológicas e Mestrando pela universidade do Oeste Paulista (UNOESTE).

  • Edinara Maria Barbosa, UNIVERSIDADE PARANAENSE

    Engenheira agrônoma e doutoranda do Programa de Pos-gradução em Biotecnologia Aplicada à Agricultura.

  • Tiago Benedito Dos Santos, UNOESTE

    Doutor e Docente do Programa de Pós-graduação em Agronomia UNOESTE.

  • Silvia Graciele Hulse de Souza, Unipar
    Biotecnologia aplicada a agricultura. Fisiologia do estresse.

Referências

ALI, E.; KAKAR, K.U.; SHAH, J.M.; SAAND, M.A.; HUSSAIN, N.; XUE, D.; JIANG, L. Bioinformatics study of Tocopherol biosynthesis pathway genes in Brassica rapa. International Journal of Current Microbiology and Applied Sciences, v.4, n.3, p.721-732, 2015.

ALI, H.; LIU, Y.; AZAM, S.M.; PRIYADARSHANI, S.V.G.N.; LI, W.; HUANG, X.; HU, B.; XIONG, J.; ALI, U.; QIN, Y. Genomic survey, characterization, and expression profile analysis of the SBP genes in pineapple (Ananas comosus L.). International Journal of Genomics, v.2017, 2017. https://doi.org/10.1155/2017/1032846

ALTSCHUL, S.F.; GISH, W.; MILLER, W.; MYERS, E.; W.; LIPMAN, D.J. Basic local alignment search tool. Journal of molecular biology, v.215, n.3, p.403-410, 1990. https://doi.org/10.1016/S0022-2836(05)80360-2

AUSTIN, D.F. The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. In: Exploration, maintenance, and utilization of sweetpotato genetic resources. p.27-60, 1988.

CAO, J.; SHI, F. Dynamics of arginase gene evolution in metazoans. Journal of Biomolecular Structure and Dynamics, v.30, n.4, p.407-418, 2012. https://doi.org/10.1080/07391102.2012.682207

CHOU, K.C.; SHEN, H.B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PloS one, v.5, n.6, p.e11335, 2010. https://doi.org/10.1371/journal.pone.0011335

CONANT, G.C.; WOLFE, K.H. Probabilistic cross-species inference of orthologous genomic regions created by whole-genome duplication in yeast. Genetics, v.179, n.3, p.1681-1692, 2008. https://doi.org/10.1534/genetics.107.074450

DOLCIMASCULO, F.; RIBAS, A. F.; VIEIRA, L.G.E.; DOS SANTOS, T.B. A genome-wide analysis of the galactinol synthase gene family in banana (Musa acuminata). Colloquium Agrariae, p.01-11, 2018.

FALAVIGNA, V.D.S.; PORTO, D. D.; MIOTTO, Y.E.; SANTOS, H. P. D.; OLIVEIRA, P.R.D.D.; MARGIS-PINHEIRO, M.; PASQUALI, G.; REVERS, L.F. Evolutionary diversification of galactinol synthases in Rosaceae: adaptive roles of galactinol and raffinose during apple bud dormancy. Journal of Experimental Botany, v.69, n.5, p.1247-1259, 2018. https://doi.org/10.1093/jxb/erx451

FAN, Y.; YU, M.; LIU, M.; ZHANG, R.; SUN, W.; QIAN, M.; DUAN, H.; CHANG, W.; MA, J.; QU, C., ZHANG, K.; LEI, B.; LU, K. Genome-wide identification, evolutionary and expression analyses of the GALACTINOL SYNTHASE gene family in rapeseed and tobacco. International Journal of Molecular Sciences, v.18, n.12, p.2768, 2017. https://doi.org/10.3390/ijms18122768

FILIZ, E.; OZYIGIT, I.I.; VATANSEVER, R. Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon. Computational Biology and Chemistry, v.58, p.149-157, 2015. https://doi.org/10.1016/j.compbiolchem.2015.07.006

GÓIS, E.H.B.; MENEGAZZO, R.F.; DOS SANTOS, T.B.; DE SOUZA, S.G.H. Identification, evolutionary and expression analysis of the galactinol synthase (GolS) genes in Panicum virgatum L. and Panicum hallii: An in silico approach. Plant Gene, v.24, p.100262, 2020. https://doi.org/10.1016/j.plgene.2020.100262

HU, B.; JIN, J.; GUO, A.Y.; ZHANG, H.; LUO, J.; GAO, G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, v.31, n.8, p.1296-1297, 2015. https://doi.org/10.1093/bioinformatics/btu817

HUANG, Z.; ZHONG, X.J.; HE, J.; JIN, S.H.; GUO, H.D.; YU, X.F.; ZHOU, Y.J.; LI, X.; MA, M.D.; CHEN, Q.B.; LONG, H. Genome-wide identification, characterization, and stress-responsive expression profiling of genes encoding LEA (late embryogenesis abundant) proteins in Moso bamboo (Phyllostachys edulis). PloS one, v.11, n.11, p.e0165953, 2016. https://doi.org/10.1371/journal.pone.0165953

JARRET, R. L.; GAWEL, N.; WHITTEMORE, A. Phylogenetic relationships of the sweetpotato [Ipomoea batatas (L.) Lam.]. Journal of the American Society for Horticultural Science, v.117, n.4, p.633-637, 1992. https://doi.org/10.21273/JASHS.117.4.633

JIANGTAO, C.; YINGZHEN, K.; QIAN, W.; YUHE, S.; DAPING, G.; JING, L.V.; GUANSHAN, L. Mapgene2chrom, a tool to draw gene physical map based on perl and svg languages. Hereditas, v.37, n.1, p.91-97, 2015. https://doi.org/10.16288/j.yczz.2015.01.013

JIANG, Q.; CHEN, A.; LV, Z.; DONG, Z.; WANG, L.; MENG, X.; FENG, Y.; WAN, Y.; SU, C.; CUI, Y.; XU, W.; HOU, H.; ZHU, X. Systematic analysis of galactinol synthase and raffinose synthase gene families in potato and their expression patterns in development and abiotic stress responses. Genes, v.14, n.7, p.1344, 2023. https://doi.org/10.3390/genes14071344

KIM, J.H.; HOSSAIN, A.M.; KIM, N.H.; LEE, D.H.; LEE, H.J. Identification and functional characterization of the GALACTINOL SYNTHASE (MoGolS1) gene in Melissa officinalis plants. Journal of Applied Biological Chemistry, v. 54, n.4, p. 244-251, 2011. http://dx.doi.org/10.3839/jabc.2011.040

KONING, R.; WILS, G.E.; KIEKENS, R.; DE VUYST, L.; ANGENON, G. Impact of drought and salt stress on galactinol and raffinose family oligosaccharides in common bean (Phaseolus vulgaris). AoB Plants, v.15, n.4, p.plad038, 2023. https://doi.org/10.1093/aobpla/plad038

KUMAR, S.; STECHER, G.; TAMURA, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, v.33, n.7, p.1870-1874, 2016. https://doi.org/10.1093/molbev/msw054

LAHUTA, L.B.; PLUSKOTA, W.E.; STELMASZEWSKA, J.; SZABLIŃSKA, J. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.). Journal of plant physiology, v.171, n.14, p.1306-1314, 2014. https://doi.org/10.1016/j.jplph.2014.04.012

LI, R.; YUAN, S.; HE, Y.; FAN, J.; ZHOU, Y.; QIU, T.; LIN, X.; YAO, Y.; LIU, J.; FU, S.; HU, X.; GUO, J.; Genome-wide identification and expression profiling analysis of the galactinol synthase gene family in cassava (Manihot esculenta Crantz). Agronomy, v.8, n.11, p.250, 2018. https://doi.org/10.3390/agronomy8110250

MARTINS, C.P.; FERNANDES, D.; GUIMARÃES, V.M.; DU, D.; SILVA, D.C.; ALMEIDA, A.A.F.; GMITTER JR.,F.G.; OTONI, W.C.; COSTA, M.G. Comprehensive analysis of the GALACTINOL SYNTHASE (GolS) gene family in citrus and the function of CsGolS6 in stress tolerance. Plos one, v.17, n.9, p.e0274791, 2022. https://doi.org/10.1371/journal.pone.0274791

MEYER, T.; VIGOUROUX, A.; AUMONT-NICAISE, M.; COMTE, G.; VIAL, L.; LAVIRE, C.; MORÉRA, S. The plant defense signal galactinol is specifically used as a nutrient by the bacterial pathogen Agrobacterium fabrum. Journal of Biological Chemistry, v. 293, n. 21, p. 7930-7941, 2018. https://doi.org/10.1074/jbc.RA118.001856

MUKHERJEE, S.; SENGUPTA, S.; MUKHERJEE, A.; BASAK, P.; MAJUMDER, A. L. Abiotic stress regulates expression of galactinol synthase genes post-transcriptionally through intron retention in rice. Planta, v.249, p.891-912, 2019. https://doi.org/10.1007/s00425-018-3046-z

NISHIZAWA, A.; YABUTA, Y.; SHIGEOKA, S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant physiology, v.147, n.3, p.1251-1263, 2008. https://doi.org/10.1104/pp.108.122465

PANIKULANGARA, T.J.; EGGERS-SCHUMACHER, G.; WUNDERLICH, M.; STRANSKY, H.; SCHÖFFL, F. Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant physiology, v.136, n.2, p.3148-3158, 2004. https://doi.org/10.1104/pp.104.042606

SALVI, P.; KAMBLE, N.U.; MAJEE, M. Ectopic over-expression of ABA-responsive Chickpea galactinol synthase (CaGolS) gene results in improved tolerance to dehydration stress by modulating ROS scavenging. Environmental and Experimental Botany, v.171, p.103957, 2020. https://doi.org/10.1016/j.envexpbot.2019.103957

SANTOS, T.B.; BUDZINSKI, I.G.; MARUR, C.J.; PETKOWICZ, C.L.; PEREIRA, L.F.; VIEIRA, L.G. Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiology and Biochemistry, v.49, n.4, p.441-448, 2011. https://doi.org/10.1016/j.plaphy.2011.01.023

SANTOS, T.B.D.; LIMA, R.B.D.; NAGASHIMA, G.T.; PETKOWICZ, C.L.D.O.; CARPENTIERI-PÍPOLO, V.; PEREIRA, L.F.P.; DOMINGUES, D.S.; VIEIRA, L.G.E. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought. Genetics and Molecular Biology, v.38, p.182-190, 2015. https://doi.org/10.1590/S1415-475738220140171

SANTOS, T.B.; VIEIRA, L.G.E. Involvement of the galactinol synthase gene in abiotic and biotic stress responses: A review on current knowledge. Plant Gene, v.24, p.100258, 2020. https://doi.org/10.1016/j.plgene.2020.100258

SENGUPTA, S.; MUKHERJEE, S.; PARWEEN, S.; MAJUMDER, A.L. Galactinol synthase across evolutionary diverse taxa: functional preference for higher plants? FEBS letters, v.586, n.10, p.1488-1496, 2012. https://doi.org/10.1016/j.febslet.2012.04.003

SPRENGER, N.; KELLER, F. Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases. The Plant Journal, v.21, n.3, p.249-258, 2000. https://doi.org/10.1046/j.1365-313x.2000.00671.x

TAJI, T.; SEKI, M.; SATOU, M.; SAKURAI, T.; KOBAYASHI, M.; ISHIYAMA, K.; NARUSAKA, Y.; NARUSAKA, M.; ZHU, J.K. SHINOZAKI, K. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology, v.135, n.3, p.1697-1709, 2004. https://doi.org/10.1104/pp.104.039909

THOMPSON, J.D.; HIGGINS, D.G.; GIBSON, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, v.22, n.22, p.4673-4680, 1994. https://doi.org/10.1093/nar/22.22.4673

WU, S.; LAU, K.H.; CAO, Q.; HAMILTON, J.P.; SUN, H.; ZHOU, C.; ESERMAN, L.; GEMENET, D.C.; OLUKOLU, B.A.; WANG, H.Y.; CRISOVAN, E.; GODDEN, G.T.; JIAO, J.; WANG, X.; MERCY, K.; MANRIQUE-CARPINTERO, N.; VAILLANCOURT, B.; WIEGERT-RININGER, K.; YANG, X.S.; BAO, K.; SCHAFF, J.; KREUZE, J.; GRUNEBERG, W.; KHAN, A.; GHISLAIN, M.; MA, D.F.; JIANG, J.M.; MWANGA, R.; LEEBENS-MACK, J.; COIN, L.; YENCHO, C.; ROBIN, B.R.; FEI, Z. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, v.9, n.1, p.4580, 2018. https://doi.org/10.1038/s41467-018-06983-8

YOU, J.; WANG, Y.; ZHANG, Y.; DOSSA, K.; LI, D.; RONG, Z.; WANG, L.; ZHANG, X. Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame. Scientific Reports, v.8, n.1, p.4331, 2018. https://doi.org/10.1038/s41598-018-22585-2

ZHANG, Z.; LI, J.; ZHAO, X.Q.; WANG, J.; WONG, G.K.S.; YU, J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics, proteomics & bioinformatics, v.4, n.4, p. 259-263, 2006. https://doi.org/10.1016/S1672-0229(07)60007-2

ZHOU, L.; BAWA, R.; HOLLIDAY, J. A. Exome resequencing reveals signatures of demographic and adaptive processes across the genome and range of black cottonwood (Populus trichocarpa). Molecular Ecology, v.23, n.10, p.2486-2499, 2014. https://doi.org/10.1111/mec.12752

ZHOU, Y.; LIU, Y.; WANG, S.; SHI, C.; ZHANG, R.; RAO, J.; Wang, X.; GU, X.; WANG, Y.; LI, D.; WEI, C. Molecular cloning and characterization of galactinol synthases in Camellia sinensis with different responses to biotic and abiotic stressors. Journal of Agricultural and Food Chemistry, v.65, n.13, p.2751-2759, 2017. https://doi.org/10.1021/acs.jafc.7b00377

Downloads

Arquivos adicionais

Publicado

2024-03-12

Como Citar

CHARACTERIZATION OF GALACTINOL SYNTHASE (GOLS) GENES IN IPOMOEA TRILOBA AND I. TRIFIDA: AN APPROACH USING BIOINFORMATICS. (2024). Colloquium Agrariae. ISSN: 1809-8215, 20(1), e244768. https://revistas.unoeste.br/index.php/ca/article/view/4768

Artigos Semelhantes

11-20 de 458

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)