BIOLOGICAL INPUTS, MORE ECONOMY AND GREATER SUSTAINABILITY

Autores

Palavras-chave:

Fixação biológica; Rentabilidade; Azospirillum; Agricultura biológica.

Resumo

A produção biológica é um sistema global de gestão das explorações agrícolas e de produção de géneros alimentícios que combina as melhores práticas ambientais, um elevado nível de biodiversidade, a preservação dos recursos naturais, a aplicação de normas exigentes em matéria de bem-estar dos animais e método de produção em sintonia com a preferência de certos consumidores por produtos obtidos utilizando substâncias e processos naturais. Sendo os insumos biológicos uma realidade no campo que rendem bilhões de reais em economia, em razão do uso do controle biológico e da fixação biológica de nitrogênio. A busca por tecnologias sustentáveis para controlar pragas e doenças, para fazer crescer plantas e para fertilizar os solos é cada vez mais crescente no setor produtivo. 

Downloads

Não há dados estatísticos.

Referências

ALMEIDA, L.S., DE PAIVA, SOBRINHO, S., DA LUZ, P.B., CALDEIRA, D.S.A., DE OLIVEIRA, A.J., DE OLIVEIRA, T.C., DA SILVA, G.V.B. Use of Azospirillum brasilense inoculant in the production of Tento Carolina seedlings. Research, Society and Development, v.10, n.1, e4210111469-e4210111469, 2021.

ANDRADE, A.C. et al. Nitrogen and potassium fertilization in elephant grass (PennisetumpurpureumSchum.cv. Napier). Science and Agrotechnology, Lavras, (Special Edition), 1643-51, 2003.

ARDAKANI, M.R.; MAFAKHERI, S. Designing a sustainable agroecosystem for wheat (Triticum aestivum L.) production. Journal of Applied Environmental Biological Sciences v.1, p.181-197.

BACILIO, M.; VAZQUEZ, P.; BASHAN, Y. Alleviation of noxious effects of cattle ranch composts on wheat seed germination by inoculation with Azospirillum spp. Biology and Fertility of Soils, v.38, p.261-266, 2003.

BALOTA, E.L. Interaction of diazotrophic bacteria and vesicular-arbuscular mycorrhizal fungi in cassava (Manihot esculenta Crantz) culture. Itaguaí: UFRRJ, Doctoral Thesis, p 281, 1994.

BALOTA, E.L.; HUNGARY, M.; DÖBEREINER, J. Occurrence of diazotrophic bacteria and vesicular-arbuscular mycorrhizal fungi associated with cassava (Manihot esculenta Crantz). In: INTERNATIONAL SYMPOSIUM ON NITROGEN FIXATION WITH NON-LEGUMES, 6., 1994, Ismailia. Anais.... Ismailia, Egypt: Cairo Univ., 1994. p.53-58.

BALOTA, E.L.; LOPES, E.S.; HUNGARY, M.; DÖBEREINER, J. Occurrence of diazotrophic bacteria and arbuscular mycorrhizal fungi in cassava. Brazilian Agricultural Research, v.34, p.1265-1276, 1999.

BARASSI, C.A.; SUELDO, R.J.; CREUS, C.M.; CARROZZI, L.E.; CASANOVAS, W.M.; PEREYRA, M.A. Potentiality of Azospirillum to optimize plant growth under adverse conditions. In: CASSÁN, F.D.; GARCIA DE SALAMONE, I. (eds.) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Asociación Argentina de Microbiologia, 2008. p.49-59.

Bartchechen, A.; et al. (2010). Effect of Azospirillum brasilense inoculation on maize (Zea mays L.) yield. Digital Field, Mourão Field. 5(1), 56-59.

BASHAN, Y & BASHAN, L. E. How the plant growth-promoting bacterium Azospirillum promotes plant growth - a critical assessment. Advances in agronomy, v.108, p. 77-136, 2010.

BASHAN, Y.; HOLGUIN, G. Azospirillum – plant relationships: environmental and physiological advances (1990-1996). Canadian Journal of Microbiology, v.43, p.103-121, 1997.

BASHAN, Y.; HOLGUIN, G.; DE-BASHAN, L.E. Azospirillum-plant relations physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology, v.50, p.521-577, 2004.

BORSARI, A.P.; CLAUDINO, M. Biodefensives: market and perception of the Brazilian producer. Agroanalysis. ABCBio. 2018. Available at:< https://www.abcbio.org.br/informativos/publicacoes/>

BOTTINI, R.; FULCHIERI, M.; PEARCE, D.; PHARIS, R. Identification of gibberelins A1, A3, and Iso-A3 in cultures of Azospirillum lipoferum. Plant Physiology, v.90, p.45-47, 1989.

BRAZIL. 2002. Decree No. 4074, of January 4, 2002. Available at:< http://www.planalto.gov.br/ccivil_03/decreto/2002/D4074.htm#anexoii.24>

BRAZIL. Ministry of Agriculture. 2012. Procedures manual for pesticide registration. Ministry of Agriculture, Livestock and Supply, 1:68. Available at:< http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos- agricolas/agrotoxicos/arquivos/manual-de-procedimentos-para-registro-de- agrotoxicos.pdf>

CAIRES, E.F.; ZARDO FILHO, R.; BARTH, G.; JORIS, H.A. W. Optimizing nitrogen use efficiency for no-till corn production by improving root growth and capturing NO3-N in subsoil. Pedosphere, v. 26, p.474-485, 2015.

CANTARELLA, H. (2007). NITROGEN. IN: NOVAIS, R. F.; ALVAREZ V., V.H.; BARROS, N.F.; FONTES, R.L.F.; CANTARUTTI, R. B.; NEVES, J.C.L. (Ed.). Soil fertility. Viçosa, MG, Brazilian Society of Soil Science, 375-470.

CASSAN, F.; PERRIG, D.; SGROY, V.; MASCIARELLI, O.; PENNA, C.; LUNA, V. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, v.45, p.28-35, 2009.

CASSAN, F.; SGROY, V.; PERRIG, D.; MASCIARELLI, O.; LUNA, V. Production of phytohormones by Azospirillum sp. Physiological and technological aspects of the promotion of plant growth. In: CASSÁN, F.D.; GARCIA DE SALAMONE, I. (Ed.) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Asociación Argentina de Microbiologia, 2008. p.61-86.

CORREA, O.S.; et al. Azospirillum brasilense-plant genotype interactions tomato modify response to bacterial diseases, and root and foliar microbial communities. In: Cassán, F.D.; Salamone Garcia, i. (ed.) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Argentine Association of Microbiology, p.87-95, 2008.

CORREA, O.S.; ROMERO, A.M.; SORIA, M.A.; DE ESTRADA, M. Azospirillum brasilense-plant genotype interactions modify tomato response to bacterial diseases, and root and foliar microbial communities. In: CASSÁN, F.D.; GARCIA DE SALAMONE, I. (eds.) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Asociación Argentina de Microbiologia, 2008. p.87-95.

DART et al. (2013). Nitrogen fertilization associated with inoculation with Azospirillum brasilense and Herbaspirillum seropedicae in corn. Brazilian Journal of Agricultural and Environmental Engineering, Campina Grande, v.17, n.10, p.1023– 1029, 2013.

DAVISON, J. Plant beneficial bacteria. Nature Biotechnology, v.6, p.282-286, 1988.

DIAS, V.C.; et al. Effects of seed inoculation with Azospirillum brasilense and nitrogen dose on oil content of corn grains. Journal of Agriculture, v.93, n.3, 2018.

DÍAZ-ZORITA, M.; FERNANDEZ CANIGIA, M.V. Analysis of the production of cereals inoculated with Azospirillum brasilense in the Argentine Republic. In: CASSÁN, F.D.; GARCIA DE SALAMONE, I. (eds.) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Asociación Argentina de Microbiologia, 2008. p.155-166.

DOBBELAERE, S.; CROONRNBORGHS, A.; THYS, A.; PTACEK, D.; VANDERLEYDEN, J.; DUTTO, P.; LABANDERA-GONZALEZ, C.; CABALLEROMELLADO, J.; AGUIRRE, J.F.; KAPULNIK, Y.; BRENER, S.; BURDMAN, S.; KADOURI, D.; SARIG, S.; OKON, Y. Responses of agronomically important crops to inoculation with Azospirillum. Australian Journal of Plant Physiology, v.28, p.871-879, 2001.

DOBBELAERE, S.; OKON, Y. The plant growth promoting effect and plant response. In: Elmerich C, Newton WE. (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, p 145–170, 2007.

DÖBEREINER, J.; DAY, J.M. Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: NEWTON W.E.; NYMAN, C.T. (eds.) INTERNATIONAL SYMPOSIUM ON NITROGEN FIXATION, vol. 2. Proceedings… Pullman, USA: Washington State University Press, 1976. p.518-538.

FERNANDES, F.C.S.; LIBARDI, P. L. Percentage of nitrogen recovery by corn, for different doses and installments of nitrogen fertilizer. Brazilian Magazine of Corn and Sorghum, Sete Lagoas, v.6, n.3, p.285-296, 2007.

FRANCHE C.; LINDSTROM K.; ELMERICH C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, p. 35–59, 2009.

GLICK BR.; TODOROVIC B.; CZARNY J.; CHENG Z.; DUAN J.; MCCONKEY B. Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences, p 227-242, 2007.

HUERGO, L.F.; et al. Regulation of nitrogen fixation in Azospirillum brasilense. In: Cassán, F.D.; Garcia De Salamone, I. Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Argentine Association of Microbiology, p.17-35, 2008.

HUERGO, L.F.; MONTEIRO, R.A.; BONATTO, A.C.; RIGO, L.U.; STEFFENS, M.B.R.; CRUZ, L.M.; CHUBATSU, L.S.; SOUZA, E.M.; PEDROSA, F.O. Regulation of nitrogen fixation in Azospirillum brasilense. In: CASSÁN, F.D.; GARCIA DE SALAMONE, I. Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentine Association of Microbiology: Argentina, 2008. p.17-35.

HUNGARY, M. Inoculation with Azospirillum brasilense: innovation in yield at low cost. London: Embrapa Soy. 36p. 2011. (Documents, 325).

HUNGRIA, M., CAMPO, R.J., SOUZA, E.M., PEDROSA F.O. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil v. 331, p.413-425, 2010.

HUNGARY, M.; CAMPO, R.J.; MENDES, I. C. The importance of the biological nitrogen fixation process for the soybean crop: an essential component for the competitiveness of the Brazilian product. P. 80, 2007. Documents 283, Embrapa Soja, Londrina, Brazil.

HUNGARY, M.; CAMPO, R.J.; MENDES, I.C. The importance of the biological nitrogen fixation process for the soybean crop: an essential component for the competitiveness of the Brazilian product. Londrina: Embrapa Soja, 2007. 80p. (Documents, 283).

HUNGARY, M.; et al. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, Hague, v.331, n.1/2, p. 413-425, 2010.

HUNGARY, M.; NOGUEIRA, M. A.; ARAUJO, R. S. 2016. Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the complaint of degraded pastures in the tropics. Agriculture, Ecosystems and Environment, v.221, p.125-131, 2016.

KLOEPPER, J.W. (1997). Current status and future trends in Biocontrol Research and Development in the US. International symposium on clean agriculture, Sapporo, DECD, 49-52.

KLOEPPER, J.W.; LIFSHITZ, R.; ZABLOTOWICZ, R.M. Free-living bacterial inoculates for enhancing crop productivity. Trends in Biotechnology. v.7, p.39-43, 1989.

LONGHINI, V.Z.; SOUZA, W.C.R.; ANDREOTTI, M.; SOARES, N.Á.; COSTA, N.R. Inoculation of diazotrophic bacteria and nitrogen fertilization in topdressing in irrigated corn. Revista Caatinga, v.29, p.338-347, 2016.

LOPES, M.S.; ARAUS, J.L.; VAN HEERDEN, P.D.R.; FOYER, C. H. Enhancing drought tolerance in C4 crops. Journal of Experimental Botany, v.62, p.3135-3153, 2011.

MARKS, B.B.; MEGIAS, M.; OLLERO, F.J.; NOGUEIRA, R. S. A.; HUNGRIA, M. Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express, v. 5, p.1-11, 2015.

MILLÉO, M. V. R.; CRISTÓFOLI, I. Evaluation of agronomic efficiency of inoculation of Azospirillum sp. in corn culture. Scientia Agraria Magazine v. 17, p. 14-23, 2016.

MOREIRA, F.M.S.; SILVA, K.; NÓBREGA, R. S. A.; CARVALHO, F. Associative diazotrophic bacteria: diversity, ecology and potential applications. Comunicata Scientiae, v. 1, p.74-99, 2010.

MOUTIA, J.F.Y.; SAUMTALLY, S.; SPAEPEN, S.; VANDERLEYDEN, J. Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant and Soil, v.337, p.233-242, 2010.

NEWTON, W. E. Physiology, biochemistry, and molecular biology of nitrogen fixation. In: Biology of the nitrogen cycle. Elsevier, 2007. p. 109-129.

OKON, Y. Azospirillum as a potential inoculant for agriculture. Trends in Biotechnology, v.3, p223-228, 1985.

OLSON, R.A.; KURTZ, L.T. Crop nitrogen requirements, utilization and fertilization. In: STEVENSON, F.J., ed. Nitrogen in agricultural soils. Madison, American Society of Agronomy, 1982, p.567-604 (Agronomy, 22).

PEARSE, P.J.; WILMAN, D. Effects of applied nitrogen on grass leaf initiation, development and death in field swards. Journal Agriculture Science, v.103, n.2, p.405-413, 1984.

PEDROSA, F.O. Biological nitrogen fixation: fertile idea. Science today, v.6, p.12-13, 1987.

PEREG, L.; DE-BASHAN, L.E.; BASHAN, Y. Assessment of affinity and specificity of Azospirillum for plants. Plant and Soil, v.399, p.389-414, 2016.

RAMPIM, L.; GUIMARÃES, V. F.; SALLA, F.H.; DA COSTA, A.C.P.R.; INAGAKI, A.M.; BULEGON, L.G.; DE FRANÇA, R. Initial development of corn seedlings re-inoculated with diazotrophic bacteria. Research, Society and Development, v.9, n.5, e24953109-e24953109, 2020.

REINHARDT, É.L.; RAMOS, P.L.; MANFIO, G.P.; BARBOSA, H.R.; PAVAN, C.; MOREIRA-FILHO, C.A. Molecular characterization of nitrogen-fixing bacteria isolated from Brazilian agricultural plants at São Paulo State. Brazilian Journal of Microbiology, v.39, p.414-422, 2008.

RODRIGUEZ, H.; GONZALEZ, T.; GOIRE, I.; BASHAN, Y. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften, v.91, p.552-555, 2004.

RYLE, G.J. A. et al. The respiratory costs of nitrogen fixation in soybean, cowpea, and white clover. II. Comparisons of the cost of nitrogen fixation and the utilization of combined nitrogen. Journal of Experimental Botany, v.30, p.145-153, 1979.

SAIKIA, S.P.; JAIN, V. Biological nitrogen fixation with non-vegetables: an achievable target or a dogma? Current Science, Bangalore, v. 92, no. 3, p. 317-322, 2007.

SCHMIDELL, W.; LIMA, U.A.; AQUARONE, E.; BORZANI, W. Industrial Biotechnology. Vol.2. Biochemical Engineering. Sao Paulo: Blucher. 2001.

SENERIRATNE, G.; ZAVAHIR, J.S.; BANDARA, W.M.M.S.; WEERASEKARA, M.L.M.A.W. Fungal bacterial biofilms: their development for novel biotechnological applications. World Journal of Microbiology and Biotechnology. v. 24, n.6, p. 739-743, 2008.

SOUZA SALES, L.Z.; GARCIA, N.F.S.; MARTINS, J.T.; DE SOUZA BUZO, F.; GARÉ, L.M.; RODRIGUES, R. A. F.; ARF, O. Inoculation with Azospirillum brasilense and reduction of nitrogen fertilization in upland rice. Research, Society and Development, v.10, n. 7, e9110716345-e9110716345, 2021.

SPAEPEN, S.; DOBBELAERE, S.; CROONENBORGHS, A.; VANDERLEYDEN, J. Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant and Soil, v.312, p.1-23, 2008.

SPOLAOR, L.T.; GONÇALVES, L.S.A.; SANTOS, O.J.A.P.; OLIVEIRA, A.L.M.; SCAPIM, C.A.; BERTAGNA, F.A.B.; KUKI, M.C. Growth-promoting bacteria associated with topdressing nitrogen fertilization on popcorn agronomic performance. Bragantia, v.75, p.33-40, 2016.

STEENHOUDT, O.; VANDERLEYDEN, J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews, v.24, p.487-506, 2000.

STRZELCZYK, E.; KAMPER, M.; LI, C. Cytocinin-like-substances and ethylene production by Azospirillum in media with different carbon sources. Microbiological research, v.149, p.55-60, 1994.

SUSLOW, T.V.; KLOEPPER, J.W.; SCHROTH, M.N.; BURR, T.J. Beneficial bacteria enhance plant growth. California Agriculture. P.15-17, 1979.

TAIZ, L.; ZEIGER, E. Plant physiology. Porto Alegre: Artmed, 2004. p.449-484.

TEIXEIRA FILHO, M. C. M.; BUZETTI, S.; ANDREOTTI, M.; ARF, O.; BENETT, C. G. S. Doses, sources and times of nitrogen application in irrigated wheat under no-tillage. Brazilian Agricultural Research v. 45, p. 797-804, 2010.

TIEN, T.M.; GASKINS, M.H.; HUBBELL, D.H. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Applied and Environmental Microbiology, v.37, p.1016-1024, 1979.

TURAN M.; GULLUCE M.; VON WIREN N.; SAHIN F. Yield promotion and phosphorus solubilization by plant growth-promoting rhizobacteria in extensive wheat production in Turkey. Journal Plant Nutrition and Soil Science, v.175, p.818–826, 2012.

YASMIN, F.; OTHMAN, R.; SIJAM, K.; SAAD, M.S. Characterization of beneficial properties of plant growth promoting rhizobacteria isolated from sweet potato rhizosphere. African Journal of Microbiology Research, v.3, n.11, p. 815-821, 2009.

Downloads

Publicado

2023-01-18

Como Citar

da Silva Almeida, A., Rossetti, C., Fleck da Rosa, G., Moreno Rodrigues, E., & Vanussa Madruga de Tunes, L. (2023). BIOLOGICAL INPUTS, MORE ECONOMY AND GREATER SUSTAINABILITY. Colloquium Agrariae. ISSN: 1809-8215, 18(4), 53–60. Recuperado de https://revistas.unoeste.br/index.php/ca/article/view/4476

Edição

Seção

Revisão Bibliográfica

Artigos mais lidos pelo mesmo(s) autor(es)