APRENDIZADO DE MÁQUINA APLICADO PARA AUXÍLIO AO MOTORISTA UTILIZANDO RASPBERRY PI

  • Luan Lourenço Esteves Universidade do Oeste Paulista - Unoeste
  • Francisco Assis da Silva Universidade do Oeste Paulista - Unoeste
  • Leandro Luiz de Almeida Universidade do Oeste Paulista - Unoeste
  • Danillo Roberto Pereira Faculdade de Informática de Presidente Prudente (FIPP) – Unoeste
  • Mário Augusto Pazoti Universidade do Oeste Paulista - Unoeste
  • Almir Olivette Artero Universidade Estadual Paulista - FCT Unesp
Palavras-chave: Auxílio ao motorista; Aprendizado de Máquina; Visão computacional, Inteligência Artificial

Resumo

O Brasil tem a quinta maior taxa de mortes no trânsito do planeta. Geralmente os acidentes são causados por falha humana, envolvendo desatenção e desrespeito à legislação. A fim de auxiliar o motorista a agir de forma preventiva e responsável, sistemas computacionais podem estabelecer meios para emitir alertas ao reconhecer situações de risco à segurança no trânsito. O desafio apresentado neste trabalho foi realizar a detecção e o reconhecimento de alguns sinais de trânsito considerados necessários à segurança viária. Este trabalho objetivou o desenvolvimento de um sistema embarcado de auxílio ao motorista baseado em visão computacional e aprendizado de máquina. A função do sistema é reconhecer situações perigosas e alertar o motorista a respeito das sinalizações encontradas nas vias (placas de sinais de velocidade máxima permitida, parada obrigatória, preferência e faixas rolamento). Foi utilizado um Raspberry Pi 3 e uma câmera de 5 megapixels para ser o hardware embarcado. O trabalho buscou o desenvolvimento de algoritmos que realizem a tarefa de auxiliar a percepção humana ao guiar veículos, com execução em hardware de baixo processamento em tempo real.

Downloads

Não há dados estatísticos.

Biografia do Autor

Danillo Roberto Pereira, Faculdade de Informática de Presidente Prudente (FIPP) – Unoeste

Possui graduação em Ciência da Computação pela FCT-UNESP (2006) ; mestrado em Ciência da Computação pela UNICAMP (2009); e doutorado pela UNICAMP. Tem experiência na área de Ciência da Computação, com ênfase em Geometria Computacional, Computação Gráfica e Visão Computacional. lattes.cnpq.br/0122307432250869

Referências

ANDRADE, D. C. Estratégia para detecção e rastreamento de faixas rodoviárias utilizando uma câmera monocular. 2017. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2017.

HOELSCHER, I. G. Detecção e classificação de sinalização vertical de trânsito em cenários complexos. 2017. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal do Rio Grande do Sul. Porto Alegre, 2017.

CNT – CONFEDERAÇÃO NACIONAL DE TRANSPORTE. Pesquisa rodoviária 2018. Disponível em: http://www.cnt.org.br. Acesso em: 17 dez. 2018.

ONSV. 90% dos acidentes são causados por falhas humanas, alerta ONSV Disponível em:

http://www.onsv.org.br/noticias/90-dos-acidentes-sao-causados-por-falhas-humanas-alerta-observatorio/. Acesso em: 17 dez. 2017.

DANESCU, R.; NEDEVSCHI, S. Detection and classification of painted road objects for intersection assistance applications. In: INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC 2010), 13., Proceedings […] Funchal, Portugal, 2010, p. 433–438. https://doi.org/10.1109/ITSC.2010.5625261

GONZALEZ, R. C.; WOODS, R. E. Digital Image Processing. 3. ed. São Paulo: Pearson Prentice Hall, 2010. Disponível em: https://bv4.digitalpages.com.br/ Acesso em: 17 dez. 2018.

LE, T. T.; TRAN, S. T.; MITA, S.; NGUYEN, T. D. Real Time Traffic Sign Detection Using Color and Shape-Based Features. In: ACIIDS'10 PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION AND DATABASE SYSTEMS: Part II. Proceeding [...] Springer-Verlag Berlin, Heidelberg, 2010, p 3-9. https://doi.org/10.1007/978-3-642-12101-2_28

LORSAKUL, A.; SUTHAKORN, J. Traffic Sign Recognition for Intelligent Vehicle/Driver Assistance System Using Neural Network on OpenCV. In: INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI 2007), 4., Proceedings… POSTECH, PIRO, KOREA, Nov 22-24, 2007. p. 279-284.

NAN, Z.; WEI, P.; XU, L.; ZHENG, N. Efficient Lane Boundary Detection with Spatial-Temporal Knowledge Filtering. Sensors 2016, v. 16, n.8, p. 1276, 2016.https://doi.org/10.3390/s16081276

SUCHITRA, S.; SATZODA, R.; SRIKANTHAN, T. Identifying lane types: A modular approach. In: INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC 2013), 16., Proceedings […] The Hague, Netherlands, 2013, p. 1929–1934. https://doi.org/10.1109/ITSC.2013.6728511

VISVIKIS, C.; SMITH, T. L.; PITCHER, M.; SMITH, R, Study on lane departure warning and lane change assistant systems. (PPR 374). Wokingham, UK: Transport Research Laboratory, 2008.

Publicado
2019-07-31
Como Citar
Lourenço Esteves, L., Assis da Silva, F., Luiz de Almeida, L., Pereira, D. R., Augusto Pazoti, M., & Olivette Artero, A. (2019). APRENDIZADO DE MÁQUINA APLICADO PARA AUXÍLIO AO MOTORISTA UTILIZANDO RASPBERRY PI. Colloquium Exactarum. ISSN: 2178-8332, 11(2), 15-25. Recuperado de http://revistas.unoeste.br/index.php/ce/article/view/3167

Outros artigos do(s) mesmo(s) autor(es)